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Key Points

• PARP-1 is overex-
pressed in mycosis
fungoides, and its high
expression correlates
with worse overall
survival.

• Inhibition of PARP-1 in
mycosis fungoides indu-
ces Blimp-1–mediated
p53-dependent apopto-
sis, highlighting a thera-
peutic potential.

The therapy of advanced mycosis fungoides (MF) presents a therapeutic challenge, and the

search for new therapeutic targets is ongoing. Poly(ADP-ribose) polymerase 1 was shown to

be upregulated in patients with advanced MF and could be druggable by a new class of

chemotherapeutic agents, PARP-1 inhibitors, which are already in clinical trials for other

malignancies; however, the role of PARP-1 inhibitors in MF has never been established. We

examined the efficacy of talazoparib in the murine model of cutaneous T-cell lymphoma.

The cytotoxic effect of talazoparib on Moloney MuLV-induced T-cell lymphoma (MBL2) cells

was a result of G2/M cell cycle arrest via the upregulation of p53. The in vivo experiments

confirmed the clinical impact of talazoparib onMF tumors.When talazoparibwas combined

with the histone deacetylase (HDAC) inhibitor, romidepsin, the cytotoxic effect was

synergized via downregulation of the DNA-repair genes Fanconi anemia complementation

group A (FANCA), Fanconi anemia complementation group D2 (FANCD2), and DNA

topoisomerase II binding protein 1 (TOPBP1) and stimulation of apoptosis via Blimp-1

(PRDM1)/Bax axis. Romidepsin increased the expression of IRF8 and Bcl-6, leading to

upregulation of Blimp1 and Bax; whereas talazoparib upregulated Blimp-1 and Bax via

upregulation of interferon regulatory factor 4 (IRF4), leading to cleavage of caspases 6 and 7.

Thus, a combination of talazoparib with romidepsin demonstrated the synergistic

antilymphoma effect and warranted further investigation in a clinical trial.

Introduction

Mycosis fungoides (MF) is a clonal malignancy that is derived from cutaneous mature T-lymphocytes.
The annual incidence of MF is 10.2 per 1 million persons.1 High relapse rates and a poor prognosis
complicate the clinical course and treatment of MF.2 Patients receiving chemotherapeutic agents used
for the treatment of advanced stages have an overall response rate of 38% to 45%.3 The median survival
of patients with stage IV disease is 18 months, even in the context of multiple lines of therapy.4 Thus,
there is a pressing need for new chemotherapeutic agents aimed at decreasing the tumor burden in the
advanced stage of MF, and hopefully, extending the lives of patients with MF.

Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme involved in regulating DNA damage and,
specifically, single-strand breaks5-7 by making of chains of poly(ADP-ribose) (PAR).5 PAR chains then
bind PARP-1 or other nuclear proteins, creating a scaffolding to initiate DNA repair.5,6 If the damage is
too severe to make reparation, PARP-1 can also induce apoptosis.5 Baseline expression of PARP-1 is
usually low, but was shown to be overexpressed in multiple cancers such as leukemias, colorectal
carcinoma, and breast carcinoma.5,6 Previously, we have demonstrated the high PARP-1 expression in
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patients with tumor stage MF and Sezary syndrome.8 Moreover, we
found that patients with aggressive disease express PAPR-1 early in
the course of their MF, which potentially can be used as a predictive
biomarker.8 Initially, PARP inhibitors (PARPi) were indicated only for
breast cancer gene (BRCA)–associated tumors such as advanced
ovarian cancer and metastatic breast cancer.9 Currently, several
PARPi such as iniparib, olaparib, niraparib, veliparib, and talazoparib
are in clinical trials for other malignancies such as head and neck
squamous cell carcinoma,10,11 gastric cancer,12,13 osteosarcoma,14

and in chronic leukocytic leukemia.15,16 However, remarkably, none of
them were tested in cutaneous lymphoma.

Here, we show that talazoparib, a novel selective inhibitor of PARP-
1 and PARP-2, kills lymphoma in vitro and in vivo as well as it kills
sensitive breast cancer. Moreover, we have demonstrated that the
cytotoxic effect of talazoparib can be potentiated when combined
with the HDAC inhibitor (HDACi) romidepsin. This combination
synergizes the downregulation of the DNA-repair genes and
stimulates apoptosis via the Blimp-1 (PRDM1)/Bax axis. We
conclude that a combination of talazoparib with romidepsin has
a valuable therapeutic potential and should be further explored
clinically.

Materials and methods

Cell lines

MBL2 cells, a Moloney MuLV-induced T-cell lymphoma cell line,
were confirmed to be of mouse origin, and no mammalian
interspecies contamination was detected by IDEXX BioResearch
(Columbia, MO). The MBL2 cell line was found to be free of the
following pathogens by IDEXX BioResearch: Ectromelia, epizootic
diarrhea of infant mice, lymphocytic choriomeningitis virus, lactate
dehydrogenase elevating virus, mouse hepatitis virus, murine
norovirus, mouse parvoviruys, minute virus of mice, Mycoplasma
pulmonis, Mycoplasma sp., Polyoma, pneumonia virus of mice,
reovirus type 3, Sendai, and Theiler’s murine encephalomyelitis
virus. MAB-MD-436 (HTB130) was purchased from ATCC
(Manassas, VA). The cell lines were stored in aliquots in liquid
nitrogen. Each aliquot was thawed and cultured for no more than
1 week for each experiment. MBL2 were cultured in RPMI-C for
1 week before inoculation into mice.

HUT78, EL4, and MDA-MB-436 were purchased from ATCC.
CD41 MyLa cells were a generous gift from Carlos A. Murga-
Zamalloa (University of Illinois Chicago, Chicago, IL).

XTT assay and IC50

Talazoparib was provided by Pfizer Inc. Bexarotene, vorinostat,
romidepsin, methotrexte, pralstrexate, and bortezomib were pur-
chased from Sigma-Aldrich (St. Louis, MO). A total of 73 104 cells
per well in 96-well plates were incubated with a single dose of drugs
in 3 replicates. A minimum of 6 doses of each drug were used to
establish the half maximal inhibitory concentration (IC50). Cells
along with the drug of interest, were coincubated at 37оC for
24 hours. Cells in media without any drugs and media alone
were used as internal controls. After 24 hours, 2,3-Bis(2-methoxy-4-
nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner saltsodium
3’-[1-[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6- ni-
tro)benzene-sulfonic acid (XTT) Cell Viability assay (ThermoFisher
Scientific, Waltham, MA) was performed. Briefly, 25 mL of XTT/
N-methyl dibenzopyrazine methyl sulfate solution was added to

each well containing 100-mL samples and was coincubated for
2 hours at 37оC in a CO2 incubator. Absorbance was measured at
450 nm (Spectra Max 340PC; Molecular Devices). Cellular IC50

values were determined for each drug using a dose-response curve
in Prism software (GraphPad Software, Inc., La Jolla, CA).

Determination of the additive and synergistic effect

Synergism and additive effect was evaluated using the median
effect equation of Chou and Talalay17 to generate a combination
index and isobologram at 50% effect level.

IHC

Formalin-fixed paraffin-embedded skin biopsies from 25 patients
with MF were collected from the tissue bank at the University of
Pittsburgh. Commercial antibodies were used for PARP-1 staining
(sc-8007, dilution 1:400; Santa Cruz Biotechnology, Inc., Dallas,
TX). Human placenta and tonsils were used as positive controls for
PARP-1. After deparaffinization, EDTA heat-induced epitope re-
trieval was conducted for 60 minutes at 95°C (Laboratory Vision
EDTA buffer, AP-9004-500; ThermoFisher Scientific). Endogenous
peroxidase activity was quenched with 3% hydrogen peroxide for
10 minutes. Prior to blocking with Avidin/Biotin Blocking Kit
(BS966L, Background Sniper; Biocare Medical, Concord, CA),
slides were incubated with normal mouse serum for 20 minutes.
Slides were incubated with primary antibodies for 30 minutes,
10 minutes with Mach 3 Mouse AP Probe, 10 minutes with Mach 3
Mouse AP-Polymer (M3M532H; Biocare Medical), and then
4 minutes with Streptavidin-AP Label (Ap605H; Biocare Medical).
Warp Red Chromagen was applied for 15 minutes (WR8065;
Biocare Medical). Counterstaining was performed with Harris
Hematoxylin for 15 seconds.

The stains for CD1a, CD3, CD4, CD8, CD5, CD7, and Ki67 of the
same sections were available as a part of routine clinical care. The
slides stained for PARP-1 were analyzed in parallel with the
aforementioned markers. The CD31CD1a2CD41Ki671 cells
negative for CD5 6 CD7 were considered to be malignant18 when
CD31CD1a2CD41CD51CD71 cells were determined to be
reactive. Immunostaining of PARP-1 was scored using a scoring
system developed by Allred et al.19 The percentage of stained cells
across the whole sample was estimated on a scale of 0 to 100.
Staining intensity was rated as negative (0), weak (1), intermediate
(2), or strong (3). A total immunohistochemistry (IHC) score was
calculated by adding the percentage multiplied by the intensity
score. The range of values was 0 to 300.

RNA-sequencing analysis and identification of

differentially expressed mRNAs

Total RNA was extracted using the TRIzol reagent (ThermoFisher
Scientific) method immediately after cells were treated with drugs.
DNA contamination was eliminated using DNase. Library construc-
tion was performed by TruSeq Stranded mRNA. Randomly
fragment-purified RNA were isolated for short read sequencing.
Fragmented RNA were reverse transcribed into cDNA. Adapters
were ligated onto both ends of the cDNA fragments. After
amplifying fragments using polymerase chain reaction, the frag-
ments with sizes between 200 and 400 bp were selected. For pair-
end sequencing on Illumina NovaSeq6000 S4 (2 3 150 bp), both
ends of the cDNA were sequenced by the read length (20 million
read depth; 40 million total reads), which were performed by
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Psomagen Inc. (Rockville, MD). The quality control of the sequenced
raw read were analyzed. Overall quality of the reads, total bases,
total reads, guanine-cytosine content (%), and basic statistics were
calculated. Artifacts such as low-quality reads, adaptor sequence,
contaminant DNA, or polymerase chain reaction duplicates were
removed to reduce biases in analysis. Trimmed reads were mapped
to a reference genome with HISAT2. Transcripts were assembled
by StringTie with aligned reads. A fold change cutoff of log2 #1.5
or $0.5 and a P value cutoff of P , .05 were adopted to select
differentially expressed and significantly regulated gene sets.
Functional enrichment by Gene Ontology analysis was performed
to infer potential biological processes and pathways of methylation-
associated genes through the IPA Bioinformatics Platform (Qiagen,
Venlo, The Netherlands). Results with P , .05 were considered as
significant functional categories.

Mouse model of cutaneous T-cell lymphoma

All animal experiments were approved by the Institutional Animal
Care and Use Committee of the University of Pittsburgh (protocol
#18093600). Mice were maintained under specific pathogen-free
conditions according to guidelines issued by the University of
Pittsburgh. The MBL2 cutaneous T-cell lymphoma model was
reproduced as previously described.20,21 Briefly, 6- to 8-week-old
mice were topically treated with 2,4-dinitrofluorobenzene (0.5% in
a vehicle consisting of 4:1 (volume-to-volume ratio) acetone and
olive oil, 0.2 mL per ear) (Fluka; Sigma-Aldrich) on dorsal ear skin
over the injection site within 10 minutes before tumor cell
inoculation. Phosphate-buffered saline (PBS)–washed MBL2 cells
(4 3 105 in 20 mL of PBS) were injected into the dermal space
under the central dorsal surface of the ears and above the cartilage
plane using a 32-gauge needle. Tumor growth was assessed as
maximum ear thickness using a digital caliper. Mice were treated
on day 14 of the tumor implantation. The drugs were administrated
daily for 7 days. In the first set of experiments, PBS (control) and
talazoparib were administered intraperitoneally. In the second set of
experiments, talazoparib was administered orally; whereas romi-
depsin and PBS were administered via the intraperitoneal route.
The mice were euthanized 3 days after the last injection, on day 24
of implantation, to adjust for immune-mediated cytotoxicity.

Flow cytometry

Cell staining was performed with anti-Blimp1 (goat polyclonal to
RPDM1/Blimp-1; Abcam, Cambridge, MA). Annexin V-FITC (BD
Bioscience, San Jose, CA) and propidium iodide (Sigma-Aldrich)
were used at 2 mL per 50 000 cells. After 15 minutes of
coincubation at room temperature in the dark, cells were analyzed
by flow cytometry immediately in the appropriate amount of PBS.
Data were acquired on a LSRII using CellQuest software (BD
Bioscience). FlowJo (Tree Star Inc., Ashland, OR) was used for
analysis of the flow cytometric data.

Cell cycle analysis

After treatment, MBL2 cells were pulsed with 10 mM EdU for
2 hours prior to detection with Alexa Fluor 647 azide (Click-iT EdU
assay; ThermoFisher Scientific). Cells were subsequently stained
by adding 2 drops of FxCycle Violet Ready Flow Reagent
(ThermoFisher Scientific) and incubated for 30 minutes at 25°C.
Data were acquired on an LSRII Flow Cytometer using a 405 laser
and 440/50 nm emission filter.

Confocal microscopy with Hoechst 33258

After treatments with talazoparib for 24 h, MBL2 cells were washed
with PBS, and stained with Hoechst 33258 fluorochrome (5 mg/mL)
for 10 minutes at room temperature in the dark. After washing
twice more with PBS, the Hoechst-stained nuclei were imaged
with a confocal microscope (Nikon A1 S232; Nikon, Tokyo, Japan).

Western blotting

MBL2 cells were lysed in RIPA Buffer (#R0278; Sigma-Aldrich) in
presence of Protease Inhibitor Cocktail (#P8340; Sigma-Aldrich).
Proteins levels were determined by using Pierce BCA Protein Assay
Kit (#23225; ThermoFisher Scientific). Proteins were separated
using 10% Mini-PROTEAN TGX Precast Protein Gel (#4561033;
Bio-Rad Laboratories, Hercules, CA), following transferring to
polyvinylidene difluoride (PVDF) membranes (#1620177; Bio-Rad
Laboratories). Unspecific binding was blocked using LI-COR
Odyssey Blocking Buffer (#92740000; BioAgilytix, Durham, NC).
The PVDF membranes where then incubated with the rab-
bit antimouse antibodies and the appropriate secondary antibodies
(IRDye 800CW Goat anti-Rabbit IgG, #92532211; BioAgilytix).
The following antibodies were used as primary antibodies:
BCL2L11-Bim (#2933, 1:500), Caspase-6 (#9762, 1:250),
Caspase-7 (#9492T, 1:500), Caspase-9 (#9504T, 1:500),
CDC2 (#28439, 1:500), Cyclin D1 (#2978T, 1:500), and G6PD
(#8866, 1:500). All primary antibodies were purchased from Cell
Signaling (Danvers, MA). To decrease noise, membranes were
washed 3 times in PBS–0.1% Tween 20. Images were obtained by
using a LI-COR Scanner (BioAgilytix) in 700 and 800 channels.
Before the same membrane was reused, it was stripped using
Restore PLUS western Blot Stripping Buffer (#46430; Thermo-
Fisher Scientific).

Statistical Analysis

Statistical analyses were based on the calculation of arithmetic
mean and standard deviation. The difference between 2 means was
compared by a 2-tailed unpaired Student t test without the
assumption of equal variances. The difference between more than
2 means was compared by 1-way analysis of variance with Tukey’s
posttest. P , .05 was considered statistically significant. Overall
survival (OS) was defined as the time from the first day of diagnosis
to death from any cause. Patients without an event in OS were
censored on the last day with valid information for the respective
endpoint. OS was estimated according to Kaplan-Meier and
compared by log-rank (Mantle-Cox) trend test. Multivariate analysis
was conducted with the use of Cox proportional hazard model
to estimate hazard ratios for evolving an event. The nominal
significance level was at 0.05 2-sided. SPSS and Prism software
was used for statistical analyses.

Results

High PARP-1 expression in MF correlates with

poor prognosis

PAPR-1 is overexpressed in many hematologic and solid tumors;
however, little is known about PARP-1 in MF. We have previously
demonstrated that the patients with aggressive MF express PARP-1
early in the course of their lymphoma, which potentially can be used
as a predictive biomarker.8 We have investigated if the expression
of PARP-1 on tumor cells (Figure 1A) correlates with the OS of

4790 KRUGLOV et al 13 OCTOBER 2020 x VOLUME 4, NUMBER 19



patients with MF. The tissue samples from 9 alive and 16 deceased
patients with MF were evaluated for PARP-1 expression: 13
patients with patches, 7 patients with plaques, and 5 patients with
tumors. The IHC score varied from 17 to 204. The median IHC
score of 50 was chosen as a cutoff. The patients with high PARP-1
IHC score (.50) had a median OS of 4.0 years, whereas the OS
was undefined (P , .01) in patients whose PARP-1 IHC score in
malignant lymphocytes was low (,50) (Figure 1B). We performed
multivariate analysis adjusted for the clinical characteristics to
identify contributing factors in relationship to PARP-1 expression.
The only statistically significant increase in HR of PARP-1 for
shorter OS was observed in elderly patients (HR, 1.083; 95%
confidence interval [95% CI], 1.010-1.160; P , .05).

Talazoparib arrests the cell cycle of lymphoma cells

at G2/M

For our in vitro and in vivo experiments, we chose murine CD41 cell
line MBL2 for 2 reasons: MBL2 expressed PARP-1, whereas another
popular CD41 lymphoma cell line, MyLa, did not (supplemental
Figure 1), and the MBL2 model is a very well-established orthotopic
model closely mimicking tumor stage of MF in immunocompetent
animals.20,22 We performed XTT assay to determine the IC50 of
talazoparib in MBL2 cells. We found that IC50 for talazoparib was
316.8 mM. We compared those values with data obtained from
MDA-MB-436 (BRCA1/2 mutant) cells, which were reported as
being a highly sensitive cell line to talazoparib.23 We found that IC50

of talazoparib in MBL2 were comparable with MDA-MB-436,
indicating high sensitivity of MBL2 to talazoparib (Figure 2A). Next,
we performed RNA sequencing to identify the changes in tran-
scriptome associated with the effect of talazoparib at 25% inhibitory
concentration (IC25) on the survival properties of MBL2 cells
(Figure 2B). A total of 740 genes were upregulated and 211 genes
were downregulated inMBL2 cells (.1.5 times; P, .05). Among the
most significant pathway were tRNA charging, protein kinase A
signaling, and glycolysis I pathways; all of which were downregulated.
Comparison of the transcriptome of apoptosis and cell cycle
pathways showed upregulation of BAX in apoptosis and GADD45A,
MDM2, DDIAS, MDM4, and CDKN1A in cell cycle pathway (Figure
2C-D). The upregulation ofCDKN1a (p21), which plays a critical role
in the control of the cell cycle, was more than sixfold. ClickI-EdU
assay, coupled with FxCycle Violet, demonstrated that talazoparib
arrest the cell cycle at G2/M (Figure 2E-F). The accumulation
of a DNA breakage in MBL2 after exposure to talazoparib is

demonstrated by Hoechst 33258 fluorescent staining (Figure 2G).
The efficacy of talazoparib was confirmed in vivo (Figure 2H-I), where
the drug efficiently decreased the size of cutaneous tumors as well as
regional lymph nodes involved by lymphoma (Figure 2J-K). Mice did
not exhibit any signs of toxicity (such as weight loss, decrease
appetite, diarrhea, etc.) while treated with talazoparib.

HDACi, romidepsin, acts synergistically with

talazoparib, killing lymphoma cells in vitro

Next, we determined the MBL2 IC50 for the following chemother-
apeutic drug currently approved or actively used in clinical practice
for the treatment of cutaneous T-cell lymphoma: bexarotene,
vorinostat, romidepsin, methotrexate, pralatrexate, and bortezomib
(Table 1). We have also estimated IC50 for a human lymphoma cell
line, HUT78. Bortezomib demonstrated the lowest IC50, whereas
talazoparib had the highest IC50 comparable to methotrexate.
Besides pralatrexate and bortezomib, the IC50 values of which were
comparable for MBL2 and HUT78, HUT78 cells were more
sensitive to talazoparib, bexarotene, vorinostat, romidepsin, and
methotrexate than MBL2. The additive interaction was defined as
the effect of 2 chemicals, which is equal to the sum of the impact of
the 2 chemicals taken separately. The synergistic interaction was
determined as the effect of 2 compounds taken together that is
greater than the sum of their separate effect at the same doses.
Talazoparib at IC25 (63.8 mM) was used for those experiments to
determine the synergism of 2 medications (talazoparib plus another
agent) (Figure 3A-F). We found that the synergistic effect was
observed when talazoparib was combined with romidepsin
(Figure 3B) and bexarotene (Figure 3C). However, the combination
index was lower in the combination of talazoparib with romidepsin,
and that was why that combination was used for further studies.

Proapoptotic synergistic effect of the combination of

talazoparib with romidepsin in vitro and in vivo

The treatment of MBL2 cells with a combination of talazoparib and
romidepsin was associated with increases in early apoptosis (with
retention of the cell membrane) as well as increases in late
apoptosis/necrosis (with compromised cell membrane) (Figure 4A-B).
Interestingly, although the contribution of the combination therapy
to early apoptosis seems to be additive, the induction of late
apoptosis after combination therapy is an effect of synergism. The
analysis of the cell cycle after the treatment with talazoparib and
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romidepsin demonstrated complete disappearance of the S phase
of the cell cycle, an expansion of sub-G1 because of an increase of
apoptotic cells, and expansion of G2/M, indicating the arrest of the
cell cycle at this phase (Figure 4C). The effect of romidepsin on the
cell cycle was different in comparison with talazoparib and is
because of the arrest of G0/G1. The best clinical response was
found to be in mice that received a combination treatment (an
experimental schema presented in Figure 4D) in comparison with
mice that received drugs separately (Figure 4E).

The synergistic effect of combination of talazoparib

with romidepsin is mediated via Blimp1-Bim axis

To explore the molecular mechanisms by which the romidepsin
potentiate the effect of talazoparib, RNA sequencing analysis of

MBL2 cell lines treated with talazoparib, romidepsin, or talazoparib
plus romidepsin was performed. Forty percent of the 2023 genes in
combination were from talazoparib, whereas only 5.9% of the genes
deregulated during the treatment with the combination of talazo-
parib plus romidepsin were from the effect of romidepsin
(Figure 5A). A total of 94 genes were presented in all 3 treatment
groups and included upregulation of PRDM1, DUSP5, and CD74,
among others (Figure 5B; supplemental Table 1). Analysis of genes
responsible for DNA repair, cell cycle arrest, and apoptosis
demonstrated the contribution of romidepsin to downregulation of
DNA repair, the synergistic effect of romidepsin and talazoparib on
downregulation of genes of cell cycle leading to cell cycle arrest,
and activation of apoptosis by talazoparib predominantly (Figure 5C).
Western blot performed on several survival or antiapoptotic factors
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such as MDM2, MDM4, CDC2, p53, and p21 showed remarkable
upregulation of p53 in the talazoparib group only (Figure 5D).
Although no p53 upregulation was found in the combination group,
an increased expression of p53 downstream target, p21, indicated
the activation of the MDM2/p53 pathway in this group as well. Flow
cytometry demonstrated significant upregulation of Blimp-1
(Figure 5E) and its gene PRDM1 (Figure 5F) in the case of the
combination of romidepsin with talazoparib. Contribution to this
upregulation of romidepsin was mediated via the upregulation of IRF8
and BCL6 (Figure 5G); whereas the contribution of talazoparib was
mediated via upregulation of IRF4 (Figure 5G). Both drugs,
talazoparib and romidepsin, as well as their combination, led to the
accumulation of Bim (Figure 5H). Interestingly, although BCL2L11
was upregulated in talazoparib and the combination group, Bim (the

protein transcribed from BCL2L11), was found to be in cells treated
with romidepsin. Activation of Bax with subsequent cleavage of
caspase 6 and 7 (Figure 5H) contributed to the effect of talazoparib
in the combination of talazoparib with romidepsin. A proposed
schema of activation of apoptosis is shown in Figure 5I.

Discussion

PARP-1 is an abundant nuclear enzyme that catalyzes poly(ADP-
ribose)-ylation of target proteins, using nicotinamide adenine
dinucleotide as a cofactor.24 For quite some time, PARP-1 was
mostly seen as an enzyme that initiates DNA repair5,6; however,
recent studies showed that PARP-1 poses many pleiotropic
functions involved in epigenetic and transcriptional controls,25

regulates mRNA stability and decay,26 and has activities associated
with oncogenic properties.27 Although PARP-1 can rarely be
expressed in normal tissue, the level of its expression is particularly
high in various cancers, such as leukemias, lymphomas, colorectal
cancer, and especially breast and ovarian cancers.5,6 Previously, we
showed that PARP-1 expression is increased in MF compared with
healthy tissue.8 We also demonstrated in the past that PARP-1
expression in MF is increased in tumor stage compared with early-
stage disease.8 In the present study, we have demonstrated that
high PARP-1 expression on malignant lymphocytes correlates with
worse OS in patients with MF. Similar observations were made
recently in patients with acute myeloid leukemia, where high
expression levels of PARP-1 were associated with worse OS and
relapse-free survival.28

Table 1. IC50 of various antilymphoma medications for MBL2 and

HUT78 cell line

Drug Class IC50 MBL2, mM IC50 HUT78, mM

Talazoparib PARP-1 inhibitor 316.8 190

Bexarotene Rexinoid 45.7 16.9

Vorinostat HDACi 9.7 0.13

Romidepsin HDACi 0.0548 0.027

Methotrexate Folate inhibitor 314.7 38.5

Pralatrexate Folate inhibitor 115.9 94.5

Boretzomib Proteosome inhibitor 0.009 0.009
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Originally indicated for BRCA-associated tumors and currently FDA
approved for advanced ovarian cancer and metastatic breast
cancer,9 PARPi are currently being explored for other malignancies
such as head and neck squamous cell carcinoma,10,11 gastric
cancer,12,13 osteosarcoma,14 and in chronic leukocytic leukemia.15,16

Talazoparib is a novel, selective inhibitor of PARP-1 and PARP-2 that
has been shown to achieve antitumor response at lower concen-
trations than earlier generation PARPi.29 In marked contrast to PARP-
1, loss of PARP-2 does not result in additional phenotypes in growth,
development, or tumorigenesis in mice.30 We showed that MBL2
sensitivity to talazoparib was comparable with MDA-MB-436,
BRCA1/2mutant cells previously reported as being a highly sensitive

cell line to talazoparib.23 The reason for the high IC50 values of
talazoparib in MBL2 (3 logs over what one expects for a sensitive cell
line) and MDA-MB-436 in our experiments was because of the
different number of cells that we used for our assays. We used 7 3
104 cells per well in 96-well plates when Fejzo et al23 used 53 103 to
10 3 103 cells per well. Interestingly, the human lymphoma cell line
HUT78 was more sensitive to talazoparib than MBL2, which provides
some translational expectations. Thus, comparable MBL2 IC50 with
MDA-MB-436, which is highly sensitive to talazoparib, breast cancer
cell line, and even the higher sensitivity of human lymphoma cell line,
HUT78, indicates clinical relevance of the current therapeutic doses
and may be translated directly into the clinical trial.
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We have shown that talazoparib arrested the cell cycle of lymphoma
cells in G2/M because of upregulation of p53 and p21, which is
consistent with previously published data obtained in breast cancer
cell lines.31 PARP inhibition is not always sufficient to cause cell
death,32 and the search for efficient combinations is ongoing.
Previous studies in chronic lymphocytic leukemia showed that the
activity of talazoparib is independent on the presence of WT p53 or
complete loss of p53, indicating the importance of the other
mechanism of action of PARPi in leukemia and lymphomas.15

PARP-1 is involved in DNA methylation by regulation of expression
levels or protein activity of DNA methyltransferase-1. Abnormal
DNA methylation is a characteristic feature of MF; thus, it will be
reasonable to assume that MF patients might benefit from
a combination of hypomethylating agents and PARPi. In this study,
we have demonstrated the potentiation of the effect of PARP
inhibition by HDACi. When talazoparib was combined with HDACi,
romidepsin, the cytotoxic effect was synergized via downregulation
of DNA-repair genes, FANCA, FANCD2, and TOPBP1 and
stimulation of apoptosis via Blimp-1/Bax axis. Romidepsin in-
creased the expression of IRF8 and BCL6, leading to upregulation
of Blimp1 and Bax, whereas talazoparib upregulated Blimp-1 and
BAX via upregulation IRF4 leading to cleavage of caspases 6 and 7.
Thus, we have shown that the combination of PARPi with HDACi
has a synergistic antilymphoma effect in vitro and in vivo, which
warrants further investigation of this combination in clinical trials.

When PARPi was combined with HDACi in our experiments, the
cytotoxic effect of that combination wasmediated by the upregulation
of Blimp-1 (PRDM1 gene), leading to apoptosis of lymphoma cells.
PRDM1 is a transcriptional repressor, which has been shown to
regulate the differentiation of B cells into antibody-secreting cells.33

The repression of MYC,34 SPIB, BCL6, ID3, and PAX5 is required
for this function.35 Recently, PRDM1 expression has been detected
in CD81 and CD41 T cells with the effector phenotype36,37 and in
CD251 regulatory T cells.37 Moreover, PRDM1 has been shown to

regulate T-cell homeostasis36,37 and act as a tumor suppressor gene
in natural killer cell malignancies.38 The baseline expression of
PRDM1 was very low in our T-cell lymphoma cells, which is
consistent with observation in natural killer cell lymphomas.38 It is
possible that the mechanisms of PRDM1 inactivation are similar
among those type of lymphoma, but further studies are needed to
clarify this hypothesis.

In summary, the present results indicate the PARP-1 expression is
upregulated in a cohort of patients with advanced MF whose
disease has worse OS. PARP inhibition by talazoparib initiates an
arrest of the cell cycle of lymphoma cells at G2/M and induces
apoptosis.
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